Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
1.
Acta Parasitol ; 69(1): 889-897, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38470530

RESUMO

PURPOSE: Strongyloides stercoralis is a parasite with special characteristics presenting it as a unique nematode. Iran is an endemic area for S. stercoralis. In this study, nested-qPCR-high resolution melting (HRM) technology was applied on some human isolates of S. stercoralis from this country by focusing on evolutionary genetics analysis. METHODS: Twelve human isolates of S. stercoralis were collected from four endemic provinces of Iran. Genomic DNA was extracted from a single filariform larva for every isolate. Using specific primers targeting partial regions in cox1 gene, nested-qPCR-HRM was performed and melting-curve profiles were analyzed alongside the evaluation of genetic proximity and phylogenetic analysis using MEGA7 and DnaSP5 software. RESULTS: The melting temperature (Tm) values of the isolates were 77.9 °C-78.3 °C. All isolates from Guilan, Mazandaran, and Khouzestan Provinces shared Tm values of 78.2 °C to 78.3 °C, while the isolates from Hormozgan Province showed Tm values of 77.9 °C, 78.0 °C, and 78.1 °C. The phylogenetic tree illustrated that the sequences of the current study included nine haplotypes. Tajima's D index analyses showed that cox1 gene in S. stercoralis isolates was negative (Tajima's D = - 0.27). CONCLUSION: The isolates were divided into five temperature groups. Although HRM assay compared to PCR sequencing identified more limited genetic changes, it revealed that the mean of Tm of the isolates from Hormozgan Province was lower than those of other provinces and represented specific haplotypes for this geographical region on the phylogenetic tree.


Assuntos
Filogenia , Reação em Cadeia da Polimerase em Tempo Real , Strongyloides stercoralis , Estrongiloidíase , Animais , Irã (Geográfico)/epidemiologia , Strongyloides stercoralis/genética , Strongyloides stercoralis/isolamento & purificação , Strongyloides stercoralis/classificação , Humanos , Estrongiloidíase/parasitologia , Estrongiloidíase/epidemiologia , DNA de Helmintos/genética , Temperatura de Transição , Haplótipos , Ciclo-Oxigenase 1/genética
2.
Parasitology ; 151(3): 295-299, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38185819

RESUMO

Some serology assays demonstrated useful for post-treatment monitoring of Strongyloides stercoralis infection. Serology frequently has low specificity, which might be improved by the use of recombinant antigens. The Strongy Detect ELISA is based on 2 recombinant antigens (SsIR and NIE) and proved good accuracy. Aim of this study was to evaluate the performance of this test for the post-treatment monitoring of strongyloidiasis. We tested 38 paired sera, with matched fecal tests results, stored in our biobank and originating from a randomized controlled trial. At baseline, all patients tested positive for at least 1 fecal assay among PCR, direct stool microscopy and agar plate culture. Patients were re-tested with both serology and fecal assays 12 months after treatment. Primary outcome was the relative reduction in optical density (OD) between baseline and follow up. We observed that about 95% samples showed a reduction between pre and post-treatment OD, with a median relative reduction of 93.9% (IQR 77.3%­98.1%). In conclusion, the test proved reliable for post-treatment monitoring. However, some technical issues, including that the threshold for positivity has not be predefined, and that a substantial number of samples showed overflow signals, need to be fixed to permit use in routine practice.


Assuntos
Strongyloides stercoralis , Estrongiloidíase , Animais , Humanos , Strongyloides stercoralis/genética , Seguimentos , Anticorpos Anti-Helmínticos , Estrongiloidíase/diagnóstico , Ensaio de Imunoadsorção Enzimática/métodos , Sensibilidade e Especificidade
3.
Parasit Vectors ; 17(1): 21, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38229164

RESUMO

BACKGROUND: Strongyloidiasis is a neglected tropical disease (NTD) that is caused mainly by Strongyloides stercoralis, with an estimated 600 million people infected worldwide, and in fewer cases by Strongyloides fuelleborni fuelleborni and Strongyloides fuelleborni kellyi. A number of studies have been conducted on the genetic diversity of S. stercoralis in East and Southeast Asia; however, there is very limited corresponding information from West Asian countries, including Iran. METHODS: For Strongyloides worms collected from patients in southwestern Iran, the hypervariable regions I (HVR-I) and IV (HVR-IV) of the nuclear 18S ribosomal DNA (rDNA) locus (SSU) and a fragment of the subunit 1 mitochondrial cytochrome c oxidase gene (cox-1) were sequenced. For a subset of the worms, whole-genome sequencing data were generated. RESULTS: The cox-1 sequences of 136 worms isolated from 23 patients indicated that all isolates were S. stercoralis. Among the cox-1 sequences, 33 polymorphic sites and 13 haplotypes were found. The phylogenetic analysis demonstrated that some sequences clustered fairly closely with sequences from humans and dogs from other parts of the world, while others formed a separate, Iran-specific group. Among 64 S. stercoralis analyzed, we found three of the previously described SSU HVR-I haplotypes, with haplotype II being the most frequent haplotype. In contrast to Southeast Asia, where S. stercoralis heterozygous for different haplotypes at the HVR-I locus are rare, we found 20 worms to be heterozygous for two different HVR-I haplotypes, 18 of which fell into the Iran-specific cox-1 cluster. SSU-heterozygous worms also showed elevated heterozygosity at the whole-genome level. CONCLUSIONS: We conclude that the S. stercoralis population from the Khuzestan province shares much of the genetic diversity with the population in Southeast Asia, but there is an indication of additional genetic input. There appears to be some population structure with different subpopulations, which however do interbreed at least occasionally.


Assuntos
Strongyloides stercoralis , Estrongiloidíase , Humanos , Animais , Cães , Strongyloides stercoralis/genética , Genótipo , Filogenia , Irã (Geográfico)/epidemiologia , Estrongiloidíase/epidemiologia , Estrongiloidíase/veterinária , Strongyloides , Fezes
4.
Acta Trop ; 251: 107122, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38246399

RESUMO

Strongyloidiasis, caused by the nematode Strongyloides stercoralis, remains a threat to global public health, and a vaccine would be useful to control the disease, especially in developing countries. This study aimed to evaluate the efficacy of recombinant proteins, A133 and Ss-IR, as potential vaccine candidates against strongyloidiasis by investigating the humoral and cellular immune responses in immunized mice. Respective antigens were adjuvanted with Complete Freund's Adjuvant (prime) and Incomplete Freund's Adjuvant (boost) and administered intraperitoneally (prime) and subcutaneously (boost) to female BALB/c mice. For antigen-only doses, only antigens were injected without adjuvants. Altogether, 1 prime dose, 4 booster doses, and 2 antigen-only doses were administered successively. ELISAs were conducted to assess the antibody responses, along with flow cytometry and cytokine ELISA to elucidate the cellular immune responses. Results showed that A133 and Ss-IR induced the production of IgG1 and IgG2a, with A133 generating more robust IgG2a responses than Ss-IR. Flow cytometry findings indicated that effector CD8+T-cells and memory B-cells activity were upregulated significantly for A133 only, whereas cytokine ELISA demonstrated that a Th1/Th2/Th17 mixed cell responses were triggered upon vaccination with either antigen. This preliminary study illustrated the good potential of recombinant A133 and Ss-IR as vaccine candidates against S. stercoralis. It provided information on the probable immune mechanism involved in host defence and the elicitation of protection against S. stercoralis.


Assuntos
Strongyloides stercoralis , Estrongiloidíase , Vacinas , Feminino , Animais , Camundongos , Strongyloides stercoralis/genética , Imunoglobulina G , Estrongiloidíase/prevenção & controle , Imunização , Vacinação , Adjuvantes Imunológicos , Citocinas/metabolismo , Camundongos Endogâmicos BALB C
5.
Parasit Vectors ; 16(1): 393, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37907997

RESUMO

BACKGROUND: Strongyloides stercoralis infection is a common neglected tropical disease distributed worldwide, mainly in tropical and subtropical climates. The impact of S. stercoralis infections on human health ranges from mild asymptomatic infections to chronic strongyloidiasis unnoticeable until the host is immunosuppressed. In severe strongyloidiasis, a syndrome of hyperinfection and larval dissemination to various organs can occur with high mortality rates. The diagnosis of strongyloidiasis is challenging because of the absence of a single standard reference test with high sensitivity and specificity, which also makes it difficult to estimate the accuracy of other diagnostic tests. This study aimed to evaluate, for the first time, the use of an easy-to-perform loop-mediated isothermal amplification (LAMP) colorimetric assay (named Strong-LAMP) for the molecular screening of strongyloidiasis in stool samples from patients in a low-resource endemic area in Cubal, Angola. To compare different LAMP application scenarios, the performance of the Strong-LAMP under field conditions in Angola was reassessed in a well-equipped reference laboratory in Spain and compared with a quantitative polymerase chain reaction (qPCR) method. METHODS: A total of 192 stool samples were collected from adult population in Cubal, Angola, and examined by parasitological methods (direct saline microscopy and Baermann's technique). DNA was extracted from each stool sample using a commercial kit and tested by the colorimetric Strong-LAMP assay for the detection of Strongyloides spp. under field conditions. Furthermore, all samples were shipped to a well-equipped laboratory in Spain, reanalysed by the same procedure and compared with a qPCR method. The overall results after testing were compared. RESULTS: Strongyloides stercoralis larvae were identified by direct saline microscopy and Baermann in a total of 10/192 (5.2%) and 18/192 (9.4%) stool samples, respectively. Other helminth and protozoan species were also identified. The Strong-LAMP-positive results were visually detected in 69/192 (35.9%) stool samples. The comparison of Strong-LAMP results in field conditions and at a reference laboratory matched in a total of 146/192 (76.0%) samples. A total of 24/192 (12.5%) stool samples tested positive by qPCR. CONCLUSIONS: This is the first study in which colorimetric Strong-LAMP has been clinically evaluated in a resource-poor strongyloidiasis endemic area. Strong-LAMP has been shown to be more effective in screening for strongyloidiasis than parasitological methods under field conditions and qPCR in the laboratory. Our Strong-LAMP has proven to be a field-friendly and highly accurate molecular test for the diagnosis of strongyloidiasis.


Assuntos
Strongyloides stercoralis , Estrongiloidíase , Adulto , Animais , Humanos , Estrongiloidíase/diagnóstico , Estrongiloidíase/epidemiologia , Angola , Strongyloides stercoralis/genética , Laboratórios , Fezes
6.
Parasit Vectors ; 16(1): 399, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37924155

RESUMO

BACKGROUND: Ribosome biogenesis is the process of assembling ribosome complexes that regulate cell proliferation and differentiation with potential regulatory effects on development. Many factors regulate ribosome biological processes. Nin one binding protein (Nob1) has received widespread attention as key genes regulating ribosome biogenesis-the 3' end of the 20S rRNA is cleaved by Nob1 at cleavage site D to form 18S rRNA, generating translationally capable 40S subunit. As a ribosome biogenesis factor, Nob1 may regulate the development of organisms, but almost nothing is known about the function of Nob1 for any parasitic nematode. We explored the functional role of NOBP-1 (the homologous gene of Nob1) encoding gene from a parasitic nematode-Strongyloides stercoralis. METHODS: The full-length cDNA, gDNA and promoter region of Ss-nobp-1 was identified using protein BLAST in WormBase ParaSite according to the Caenorhabditis elegans NOBP-1 sequence to analyze the gene structure. RNA sequencing (RNA-seq) data in wormbase were retrieved and analyzed to assess the transcript abundance of Ss-nobp-1 in seven developmental stages of S. stercoralis. The standard method for gonadal microinjection of constructs was carried out to determine the anatomic expression patterns of Ss-nobp-1. The interaction between Ss-NOBP-1 and partner of NOBP-1 (Ss-PNO-1) was assessed by yeast two-hybridization and bimolecular fluorescence complementarity (BiFC) experiments. RESULTS: The NOBP-1 encoding gene Ss-nopb-1 from the zoonotic parasite S. stercoralis has been isolated and characterized. The genomic DNA representing Ss-nobp-1 includes a 1599-bp coding region and encodes a protein comprising 403 amino acids (aa), which contains conserved PIN domain and zinc ribbon domain. RNA-seq analysis revealed that Ss-nobp-1 transcripts are present throughout the seven developmental stages in S. stercoralis and have higher transcription levels in iL3, L3 and P Female. Ss-nobp-1 is expressed mainly in the intestine of transgenic S. stercoralis larvae, and there is a direct interaction between Ss-NOBP-1 and Ss-PNO-1. CONCLUSIONS: Collectively, Ss-NOBP-1 has a potential role in embryo formation and the infective process, and findings from this study provide a sound foundation for investigating its function during the development of parasitic nematode.


Assuntos
Strongyloides stercoralis , Animais , Feminino , Strongyloides stercoralis/genética , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Larva
7.
J Helminthol ; 97: e88, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37974436

RESUMO

Molecular techniques are an alternative for the diagnosis of strongyloidiasis, produced by Strongyloides stercoralis. However, it is necessary to determine the best amplification target for the populations of this parasite present in a geographical area and standardize a polymerase chain reaction (PCR) protocol for its detection. The objectives of this work were the comparison of different PCR targets for molecular detection of S. stercoralis and the standardization of a PCR protocol for the selected target with the best diagnostic results. DNA extraction was performed from parasite larvae by saline precipitation. Three amplification targets of the genes encoding ribosomal RNA 18S (18S rDNA) and 5.8S (5.8S rDNA) and cytochrome oxidase 1 (COX1) of S. stercoralis were compared, and the PCR reaction conditions for the best target were standardized (concentration of reagents and template DNA, hybridization temperature, and number of cycles). The analytical sensitivity and specificity of the technique were determined. DNA extraction by saline precipitation made it possible to obtain DNA of high purity and integrity. The ideal target was the 5.8S rDNA, since the 18S rDNA yielded non-reproducible results and COX1 never amplified under any condition tested. The optimal conditions for the 5.8S rDNA-PCR were: 1.5 mM MgCl2, 100 µM dNTPs, 0.4 µM primers, and 0.75 U DNA polymerase, using 35 cycles and a hybridization temperature of 60 °C. The analytical sensitivity of the PCR was 1 attogram of DNA, and the specificity was 100%. Consequently, the 5.8S rDNA was shown to be highly sensitive and specific for the detection of S. stercoralis DNA.


Assuntos
Strongyloides stercoralis , Estrongiloidíase , Animais , Strongyloides stercoralis/genética , Estrongiloidíase/diagnóstico , Estrongiloidíase/parasitologia , Reação em Cadeia da Polimerase/métodos , RNA Ribossômico 18S/genética , DNA Ribossômico/genética , Fezes/parasitologia
8.
Parasit Vectors ; 16(1): 389, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891629

RESUMO

BACKGROUND: Strongyloides stercoralis is a soil-transmitted intestinal nematode with a complex life cycle that primarily affects humans, non-human primates, dogs, and occasionally cats. This study presents, to the best of our knowledge, the first case of S. stercoralis infection and its genotyping in a domestic dog from Argentina. METHODS: The patient was a female wired-haired Teckel dog exhibiting recurrent coughing. Coproparasitological analysis using the Baermann technique revealed the presence of rhabditiform larvae morphologically compatible with S. stercoralis. To confirm this finding, molecular diagnosis (18S ribosomal RNA) and analysis of the cox1 gene were performed. RESULTS: We identified a haplotype (HP20) that has previously only been related to S. stercoralis infection in dogs, but was found in the present study to be highly related to the haplotype (HP16) of a zoonotic variant and divergent from those previously described from human patients in Argentina. Furthermore, unlike in human cases following treatment with ivermectin, the dog was negative after moxidectin treatment according to polymerase chain reaction of the sampled faeces. CONCLUSIONS: This case report shows the importance of further investigation into potential transmission events and prevalences of S. stercoralis in dogs and humans in South America. The results reported here should also encourage future work that examines different scenarios of infection with S. stercoralis in dogs and humans with the aim of integrating clinical management, diagnosis, treatment and follow-up strategies in the quest for new approaches for the treatment of this disease in animals and humans. The findings support the adoption of a One Health approach, which recognizes the interconnectedness between animal and human health, in addressing parasitic infections such as strongyloidiasis.


Assuntos
Strongyloides stercoralis , Estrongiloidíase , Humanos , Animais , Cães , Feminino , Estrongiloidíase/diagnóstico , Estrongiloidíase/tratamento farmacológico , Estrongiloidíase/veterinária , Strongyloides stercoralis/genética , Argentina/epidemiologia , Fezes/parasitologia , Estágios do Ciclo de Vida
9.
Transpl Infect Dis ; 25(6): e14153, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37750481

RESUMO

BACKGROUND: The potential that Strongyloides stercoralis infection has to cause major morbidity and high mortality when the disseminated form occurs in transplant patients is of particular concern. METHODS: In this study, the objective was to observe S. stercoralis infection in patients who are candidates for transplantation by using parasitological, serological, and molecular techniques and to propose an algorithm for the detection of that infection in transplant candidates. RESULTS: By parasitological techniques, 10% of fecal samples were positive. Anti-Strongyloides antibodies immunoglobulin G were detected in 19.3% and 20.7% of patients by immunofluorescence assay and enzyme-linked immunosorbent assay, respectively. S. stercoralis DNA was observed in 17.3% of samples by conventional polymerase chain reaction and 32.7% of samples by quantitative polymerase chain reaction (qPCR). CONCLUSION: The set of results allows us to reinforce that a positive result by parasitological techniques and/or qPCR indicates that the specific treatment should be applied. However, the improvement of diagnostic techniques may suggest changes in the screening for strongyloidiasis in these patients.


Assuntos
Strongyloides stercoralis , Estrongiloidíase , Animais , Humanos , Estrongiloidíase/diagnóstico , Strongyloides stercoralis/genética , Programas de Rastreamento , Reação em Cadeia da Polimerase , Ensaio de Imunoadsorção Enzimática/métodos , Fezes
10.
Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi ; 35(3): 244-250, 2023 Jun 12.
Artigo em Chinês | MEDLINE | ID: mdl-37455094

RESUMO

OBJECTIVE: To predict the structure and antigenic epitope of the Strongyloides stercoralis serine protease inhibitor 1 (Ss-SRPN-1) protein using bioinformatics tools, and to construct prokaryotic expression plasmids for expression of recombinant Ss-SRPN-1 protein, so as to provide the basis for unraveling the function of the Ss-SRPN-1 protein. METHODS: The amino acid sequence of the Ss-SRPN-1 protein was downloaded from the NCBI database, and the physicochemical properties, structure and antigenic epitopes of the Ss-SRPN-1 protein were predicted using bioinformatics tools, including ExPASy, SWISS-MODEL and Protean. Primers were designed according to the nucleotide sequences of Ss-SRPN-1, and the Ss-SRPN-1 gene was amplified, cloned and sequenced with genomic DNA extracted from the infective third-stage larvae of S. stercoralis as a template. The Ss-SRPN-1 protein sequence was cloned into the pET28a (+) expression vector and transformed into Escherichia coli BL21 (DE) cells for induction of the recombinant Ss-SRPN-1 protein expression. The recombinant Ss-SRPN-1 protein was then purified and identified using Western blotting and mass spectrometry. RESULTS: Bioinformatics analysis showed that the Ss-SRPN-1 protein, which was composed of 372 amino acids and had a molecular formula of C1948H3046N488O575S16, was a stable hydrophilic protein, and the subcellular localization of the protein was predicted to be extracellular. The Ss-SRPN-1 protein was predicted to contain 11 dominant B-cell antigenic epitopes and 20 T-cell antigenic epitopes. The Ss-SRPN-1 gene with a length of 1 119 bp was successfully amplified, and the recombinant plasmid pET28a (+)/Ss-SRPN-1 was constructed and transformed into E. coli BL21(DE) cells. The expressed recombinant Ss-SRPN-1 protein had a molecular weight of approximately 43 kDa, and was characterized as a Ss-SRPN-1 protein. CONCLUSIONS: The recombinant Ss-SRPN-1 protein has been expressed successfully, and this recombinant protein may be a potential vaccine candidate against strongyloidiasis.


Assuntos
Strongyloides stercoralis , Animais , Strongyloides stercoralis/genética , Escherichia coli/genética , Serina/genética , Proteínas Recombinantes/genética , Epitopos , Biologia Computacional , Inibidores de Serina Proteinase , Clonagem Molecular
11.
Front Cell Infect Microbiol ; 13: 1082412, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37124032

RESUMO

Background: Strongyloides stercoralis (S. stercoralis) is a nematode that is widely distributed in the tropical and subtropical regions of the world and which can cause severe disseminated infection in immunocompromised individuals. However, strongyloidiasis, the disease caused by S. stercoralis, is difficult to diagnose because of its non-specific clinical presentation and the inadequate performance of conventional diagnostic methods. Case description: We report the case of a 75-year-old male patient with severe disseminated infection caused by S. stercoralis. The patient had a medical history of seasonal bronchitis and, as a consequence, had taken prednisone for many years. Initial clinical tests failed to detect any pathogens, but metagenomic next-generation sequencing (mNGS) resulted in the identification of S. stercoralis in the patient's bronchoalveolar lavage fluid (BALF) and blood. Subsequently, routine testing repeatedly detected nematode larvae in the patient's stool and sputum. Through a combination of mNGS results and clinical symptoms, the patient was finally diagnosed with severe disseminated infection caused by S. stercoralis. Conclusion: The clinical manifestations of disease caused by infection with S. stercoralis are not specific; therefore, early and accurate diagnosis is very important. mNGS can detect S. stercoralis even when it is present at only a low level. This case report supports the notion that mNGS is a valuable tool in the diagnosis of severe disseminated infections caused by S. stercoralis in immunocompromised patients.


Assuntos
Strongyloides stercoralis , Estrongiloidíase , Masculino , Animais , Humanos , Idoso , Strongyloides stercoralis/genética , Estrongiloidíase/diagnóstico , Escarro , Hospedeiro Imunocomprometido , Sequenciamento de Nucleotídeos em Larga Escala
12.
PLoS Negl Trop Dis ; 17(4): e0010777, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37068106

RESUMO

Human infection with the intestinal nematode Strongyloides stercoralis is persistent unless effectively treated, and potentially fatal in immunosuppressed individuals. Epidemiological data are lacking, partially due to inadequate diagnosis. A rapid antigen detection test is a priority for population surveillance, validating cure after treatment, and for screening prior to immunosuppression. We used a targeted analysis of open access 'omics' data sets and used online predictors to identify S. stercoralis proteins that are predicted to be present in infected stool, Strongyloides-specific, and antigenic. Transcriptomic data from gut and non-gut dwelling life cycle stages of S. stercoralis revealed 328 proteins that are differentially expressed. Strongyloides ratti proteomic data for excreted and secreted (E/S) proteins were matched to S. stercoralis, giving 1,057 orthologues. Five parasitism-associated protein families (SCP/TAPS, prolyl oligopeptidase, transthyretin-like, aspartic peptidase, acetylcholinesterase) were compared phylogenetically between S. stercoralis and outgroups, and proteins with least homology to the outgroups were selected. Proteins that overlapped between the transcriptomic and proteomic datasets were analysed by multiple sequence alignment, epitope prediction and 3D structure modelling to reveal S. stercoralis candidate peptide/protein coproantigens. We describe 22 candidates from seven genes, across all five protein families for further investigation as potential S. stercoralis diagnostic coproantigens, identified using open access data and freely-available protein analysis tools. This powerful approach can be applied to many parasitic infections with 'omic' data to accelerate development of specific diagnostic assays for laboratory or point-of-care field application.


Assuntos
Strongyloides ratti , Strongyloides stercoralis , Estrongiloidíase , Animais , Humanos , Strongyloides stercoralis/genética , Estrongiloidíase/epidemiologia , Proteômica , Acetilcolinesterase , Strongyloides ratti/genética , Fezes/parasitologia
13.
Parasit Vectors ; 16(1): 123, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37041645

RESUMO

Strongyloides stercoralis is a soil-transmitted helminth that is mainly found in the tropical and subtropical regions and affects approximately 600 million people globally. The medical importance of strongyloidiasis lies in its capacity to remain asymptomatic and chronically unnoticed until the host is immunocompromised. Additionally, in severe strongyloidiasis, hyperinfection syndrome and larva dissemination to various organs can occur. Parasitological techniques such as Baermann-Moraes and agar plate culture to detect larvae in stool samples are the current gold standard. However, the sensitivity might be inadequate, especially with reduced worm burden. Complementing parasitological techniques, immunological techniques including immunoblot and immunosorbent assays are employed, with higher sensitivity. However, cross-reactivity to other parasites may occur, hampering the assay's specificity. Recently, advances in molecular techniques such as polymerase chain reaction and next-generation sequencing technology have provided the opportunity to detect parasite DNA in stool, blood, and environmental samples. Molecular techniques, known for their high sensitivity and specificity, have the potential to circumvent some of the challenges associated with chronicity and intermittent larval output for increased detection. Here, as S. stercoralis was recently included by the World Health Organization as another soil-transmitted helminth targeted for control from 2021 to 2030, we aimed to present a review of the current molecular techniques for detecting and diagnosing S. stercoralis in a bid to consolidate the molecular studies that have been performed. Upcoming molecular trends, especially next-generation sequencing technologies, are also discussed to increase the awareness of its potential for diagnosis and detection. Improved and novel detection methods can aid in making accurate and informed choices, especially in this era where infectious and non-infectious diseases are increasingly commonplace.


Assuntos
Strongyloides stercoralis , Estrongiloidíase , Animais , Strongyloides stercoralis/genética , Estrongiloidíase/parasitologia , Reação em Cadeia da Polimerase/métodos , Fezes/parasitologia , Hospedeiro Imunocomprometido , Larva
14.
Lancet Glob Health ; 11(5): e740-e748, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36972722

RESUMO

BACKGROUND: WHO recommends the implementation of control programmes for strongyloidiasis, a neglected tropical disease caused by Strongyloides stercoralis. Specific recommendations on the diagnostic test or tests to be used for such programmes have yet to be defined. The primary objective of this study was to estimate the accuracy of five tests for strongyloidiasis. Secondary objectives were to evaluate acceptability and feasibility of use in an endemic area. METHODS: The ESTRELLA study was a cross-sectional study for which we enrolled school-age children living in remote villages of Ecuador. Recruitment took place in two periods (Sept 9-19, 2021, and April 18-June 11, 2022). Children supplied one fresh stool sample and underwent blood collection via finger prick. Faecal tests were a modified Baermann method and an in-house real-time PCR test. Antibody assays were a recombinant antigen rapid diagnostic test; a crude antigen-based ELISA (Bordier ELISA); and an ELISA based on two recombinant antigens (Strongy Detect ELISA). A Bayesian latent class model was used to analyse the data. FINDINGS: 778 children were enrolled in the study and provided the required samples. Strongy Detect ELISA had the highest sensitivity at 83·5% (95% credible interval 73·8-91·8), while Bordier ELISA had the highest specificity (100%, 99·8-100). Bordier ELISA plus either PCR or Baermann had the best performance in terms of positive and negative predictive values. The procedures were well accepted by the target population. However, study staff found the Baermann method cumbersome and time-consuming and were concerned about the amount of plastic waste produced. INTERPRETATION: The combination of Bordier ELISA with either faecal test performed best in this study. Practical aspects (including costs, logistics, and local expertise) should, however, also be taken into consideration when selecting tests in different contexts. Acceptability might differ in other settings. FUNDING: Italian Ministry of Health. TRANSLATION: For the Spanish translation of the abstract see Supplementary Materials section.


Assuntos
Strongyloides stercoralis , Estrongiloidíase , Criança , Animais , Humanos , Strongyloides stercoralis/genética , Estrongiloidíase/diagnóstico , Estrongiloidíase/epidemiologia , Estudos Transversais , Equador , Teorema de Bayes , Estudos de Viabilidade , Reação em Cadeia da Polimerase em Tempo Real , Fezes , Testes Diagnósticos de Rotina , Sensibilidade e Especificidade
15.
Parasit Vectors ; 16(1): 45, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36721249

RESUMO

BACKGROUND: Strongyloidiasis is a neglected tropical disease affecting an estimated 600 million people, particularly in resource-limited settings. The infection can persist lifelong due to unusual auto-infective cycle of Strongyloides stercoralis. The lack of a diagnostic gold standard and limited knowledge of the mechanisms underpinning this chronic infection are key issues in disease management. To date, only a few proteomics studies have been conducted to elucidate the molecular mechanisms associated with Strongyloides parasitism or to highlight novel immunological markers, with the result that our knowledge of S. stercoralis proteome remains limited. This study aims at expanding the characterization of S. stercoralis infective larvae (iL3) in order to further explore the mechanisms of parasitism and to highlight possible novel targets for serodiagnosis. METHODS: iL3 obtained from an infected subject were analysed by high-throughput tandem mass spectrometry. To achieve a more comprehensive characterization of the iL3 proteome we analysed the experimental dataset using an automatic search strategy combined with manual annotation, which included gene ontology (GO) analysis, InterPro annotation, assessment of the homology with Homo sapiens and other pathogens of clinical importance and B-cell epitope prediction. RESULTS: Our pipeline identified 430 S. stercoralis proteins, 187 (43%) of which were uncharacterized. Oxidoreductases and peptidases were amongst the most represented protein categories, as highlighted by molecular function GO analyses, while membrane and mitochondrial proteins were the most represented cellular component GO categories. A high proportion of proteins bearing the CAP, SCP or thioredoxin domain or belonging to cysteine-rich secretory, transthyretin-like or peptidase protein families were also identified. Additionally, we highlighted nine proteins displaying low homology with H. sapiens or other related pathogens and bearing amino acid sequences with immunogenic properties. CONCLUSIONS: Our comprehensive description and annotation of the S. stercoralis iL3 proteome contribute to expanding the 'omics characterization of this parasite and provide experimental evidence on the most represented proteins associated with S. stercoralis parasitism, as inferred from genomic and transcriptomic data. Moreover, novel candidate immunogenic proteins to be evaluated as novel serological diagnostic markers are highlighted.


Assuntos
Strongyloides stercoralis , Estrongiloidíase , Humanos , Animais , Proteoma , Strongyloides stercoralis/genética , Sequência de Aminoácidos , Transporte Biológico
16.
Int J Mol Sci ; 24(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36614336

RESUMO

Loop-mediated isothermal amplification (LAMP) is the most popular technology for point-of-care testing applications due its rapid, sensitive and specific detection with simple instrumentation compared to PCR-based methods. Many systems for reading the results of LAMP amplifications exist, including real-time fluorescence detection using fluorophore-labelled probes attached to oligonucleotide sequences complementary to the target nucleic acid. This methodology allows the simultaneous detection of multiple targets (multiplexing) in one LAMP assay. A method for multiplexing LAMP is the amplification by release of quenching (DARQ) technique by using a 5'-quencher modified LAMP primer annealed to 3'-fluorophore-labelled acting as detection oligonucleotide. The main application of multiplex LAMP is the rapid and accurate diagnosis of infectious diseases, allowing differentiation of co-infecting pathogens in a single reaction. Schistosomiasis, caused among other species by Schistosoma mansoni and strongyloidiasis, caused by Strongyloides stercoralis, are the most common helminth-parasite infections worldwide with overlapping distribution areas and high possibility of coinfections in the human population. It would be of great interest to develop a duplex LAMP to detect both pathogens in the same reaction. In this study, we investigate the use of our two previously developed and well-stablished LAMP assays for S. mansoni and Strongyloides spp. DNA detection in a new duplex real-time eight-primer system based on a modified DARQ probe method that can be performed in a portable isothermal fluorimeter with minimal laboratory resources. We also applied a strategy to stabilize the duplexed DARQ-LAMP mixtures at room temperature for use as ready-to-use formats facilitating analysis in field settings as point-of-care diagnostics for schistosomiasis and strongyloidiasis.


Assuntos
Esquistossomose , Strongyloides stercoralis , Estrongiloidíase , Animais , Humanos , Schistosoma mansoni/genética , Sistemas Automatizados de Assistência Junto ao Leito , DNA de Helmintos/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Strongyloides stercoralis/genética , Oligonucleotídeos , Corantes Fluorescentes , Sensibilidade e Especificidade
17.
PLoS One ; 17(12): e0279766, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36584127

RESUMO

Human gastrointestinal helminthic infections have a direct and/or indirect effect on the composition of the host gut microbial flora. Here, we investigated the effect of infection with a soil-transmitted intestinal nematode, Strongyloides stercoralis, on the gut microbiota of the human host. We also investigated whether composition of the microbiota in infected persons might vary across endemic regions. Fecal samples were obtained from volunteers from two areas endemic for strongyloidiasis, Khon Kaen Province in northeastern Thailand and Nakhon Si Thammarat Province in southern Thailand. Samples from Khon Kaen were from infected (SsNE) and uninfected (NegNE) individuals. Similarly, samples from the latter province were from infected (SsST) and uninfected (NegST) individuals. DNA sequences of the V3-V4 regions of the bacterial 16S rRNA gene were obtained from the fecal samples. No statistical difference in alpha diversity between groups in terms of richness or diversity were found. Statistical difference in beta diversity was observed only between NegNE and NegST. Some significant differences in species abundance were noted between geographical isolates. The SsNE group had a higher abundance of Tetragenococcus holophilus than did the SsST group, whereas Bradyrhizobium sp. was less abundant in the SsNE than the SsST group. For the uninfected groups, the NegNE had a higher abundance of T. holophilus than the NegST group. Our data showed that S. stercoralis infection leads to only minor alterations in the relative abundance of individual bacterial species in the human gut: no detectable effect was observed on community structure and diversity.


Assuntos
Microbioma Gastrointestinal , Strongyloides stercoralis , Estrongiloidíase , Animais , Humanos , Estrongiloidíase/epidemiologia , Microbioma Gastrointestinal/genética , Tailândia/epidemiologia , RNA Ribossômico 16S/genética , Strongyloides stercoralis/genética , Fezes/microbiologia
18.
PLoS Negl Trop Dis ; 16(9): e0010302, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36067216

RESUMO

BACKGROUND: Strongyloides stercoralis infection typically causes severe symptoms in immunocompromised patients. This infection can also alter the gut microbiota and is often found in areas where chronic kidney disease (CKD) is common. However, the relationship between S. stercoralis and the gut microbiome in chronic kidney disease (CKD) is not understood fully. Recent studies have shown that gut dysbiosis plays an important role in the progression of CKD. Hence, this study aims to investigate the association of S. stercoralis infection and gut microbiome in CKD patients. METHODOLOGY/PRINCIPAL FINDINGS: Among 838 volunteers from Khon Kaen Province, northeastern Thailand, 40 subjects with CKD were enrolled and divided into two groups (S. stercoralis-infected and -uninfected) matched for age, sex and biochemical parameters. Next-generation technology was used to amplify and sequence the V3-V4 region of the 16S rRNA gene to provide a profile of the gut microbiota. Results revealed that members of the S. stercoralis-infected group had lower gut microbial diversity than was seen in the uninfected group. Interestingly, there was significantly greater representation of some pathogenic bacteria in the S. stercoralis-infected CKD group, including Escherichia-Shigella (P = 0.013), Rothia (P = 0.013) and Aggregatibacter (P = 0.03). There was also a trend towards increased Actinomyces, Streptococcus and Haemophilus (P > 0.05) in this group. On the other hand, the S. stercoralis-infected CKD group had significantly lower representation of SCFA-producing bacteria such as Anaerostipes (P = 0.01), Coprococcus_1 (0.043) and a non-significant decrease of Akkermansia, Eubacterium rectale and Eubacterium hallii (P > 0.05) relative to the uninfected group. Interesting, the genera Escherichia-Shigella and Anaerostipes exhibited opposing trends, which were significantly related to sex, age, infection status and CKD stages. The genus Escherichia-Shigella was significantly more abundant in CKD patients over the age of 65 years and infected with S. stercoralis. A correlation analysis showed inverse moderate correlation between the abundance of the genus of Escherichia-Shigella and the level of estimated glomerular filtration rate (eGFR). CONCLUSIONS/SIGNIFICANCE: Conclusion, the results suggest that S. stercoralis infection induced gut dysbiosis in the CKD patients, which might be involved in CKD progression.


Assuntos
Insuficiência Renal Crônica , Strongyloides stercoralis , Estrongiloidíase , Idoso , Animais , Bactérias/genética , Disbiose/microbiologia , Fezes/microbiologia , Humanos , RNA Ribossômico 16S/genética , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/microbiologia , Strongyloides stercoralis/genética , Estrongiloidíase/complicações , Tailândia
19.
Mol Biochem Parasitol ; 251: 111511, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36007683

RESUMO

The gastrointestinal (GI) nematode Strongyloides stercoralis (S.s.) causes human strongyloidiasis, a potentially life-threatening disease that currently affects over 600 million people globally. The uniquely pernicious aspect of S.s. infection, as compared to all other GI nematodes, is its autoinfective larval stage (L3a) that maintains a low-grade chronic infection, allowing undetectable persistence for decades. Infected individuals who are administered glucocorticoid therapy can develop a rapid and often lethal hyperinfection syndrome within days. Hyperinfection patients often present with dramatic increases in first- and second-stage larvae and L3a in their GI tract, with L3a widely disseminating throughout host organs leading to sepsis. How glucocorticoid administration drives hyperinfection remains a critical unanswered question; specifically, it is unknown whether these steroids promote hyperinfection through eliminating essential host protective mechanisms and/or through dysregulating parasite development. This current deficiency in understanding is largely due to the previous absence of a genetically defined mouse model that would support all S.s. life-cycle stages and the lack of successful approaches for S.s. genetic manipulation. However, there are currently new possibilities through the recent demonstration that immunodeficient NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice support sub-clinical infections that can be transformed to lethal hyperinfection syndrome following glucocorticoid administration. This is coupled with advances in transcriptomics, transgenesis, and gene inactivation strategies that now allow rigorous scientific inquiry into S.s. biology. We propose that combining in vivo manipulation of host immunity and deep immunoprofiling strategies with the latest advances in S.s. transcriptomics, piggyBac transposon-mediated transgene insertion, and CRISPR/Cas-9-mediated gene inactivation will facilitate new insights into the mechanisms that could be targeted to block lethality in humans with S.s. hyperinfection.


Assuntos
Parasitos , Strongyloides stercoralis , Estrongiloidíase , Animais , Glucocorticoides/efeitos adversos , Humanos , Larva , Camundongos , Camundongos Endogâmicos NOD , Strongyloides stercoralis/genética
20.
Am J Trop Med Hyg ; 107(2): 355-358, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35895584

RESUMO

Strongyloides stercoralis is a nematode endemic to subtropical and tropical regions that may cause asymptomatic carriage, peripheral eosinophilia, cutaneous, gastrointestinal, and pulmonary disease, or hyperinfection syndrome. Conventional diagnostic methods for strongyloidiasis include feces microscopy and culture, with low sensitivity in chronic infection due to the low helminth burden, and serology, which may be prone to false-negative results with immunocompromise and false-positive results with other infections and immunological disorders. We evaluated a laboratory-developed real-time polymerase chain reaction (RT-PCR), detecting the 18S SSU ribosomal RNA gene, compared with conventional diagnostic methods, using serology via ELISA as the gold-standard. The population studied included tertiary hospital inpatients and outpatients residing in a nonendemic area. Seven hundred fifty unfixed stool specimens submitted sequentially between 2014 and 2018 were tested for S. stercoralis via microscopy and RT-PCR. Agar plate culture (APC), Harada-Mori culture (HMC), and ELISA were performed in conjunction with 141, 135, and 177 of the specimens, respectively. RT-PCR yielded 13 positive and 730 negative results, with inhibition in seven specimens. ELISA yielded 53 positive, 18 equivocal, and 106 negative results. Results for direct diagnostic methods obtained after treatment with ivermectin were excluded from the performance analysis. Compared with ELISA, RT-PCR, microscopy, APC, and HMC exhibited sensitivities of 38%, 6%, 3%, and 0%, respectively, and specificities of 100%. Given the low sensitivities commensurate with testing a population with remote infection and thus low parasite burden, we recommend a combination of serological and molecular diagnostic testing to achieve the best balance of sensitivity and specificity.


Assuntos
Strongyloides stercoralis , Estrongiloidíase , Animais , Humanos , Strongyloides stercoralis/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Fezes/parasitologia , Estrongiloidíase/diagnóstico , Estrongiloidíase/epidemiologia , Estrongiloidíase/parasitologia , Ivermectina , RNA Ribossômico 18S , Ágar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA